

"Laser-FALCONEYE /V-H"

holographic gage-camera application possibilities:

3D VECTOR measurement of DEFORMATION and STRESS DISTRIBUTION

to control:

deformation & distortion ...

load-carrying capacity & load transfer... structural integrity & shape stability...

HOLOMETROX Holographic Metrology Ltd. www.dr-gyimesi.hu (Januar 2015)

The followings are only excerpts for WELDINGS

For complete brochure of L-FE gauge camera, please, contact

PRODUCT MANAGER

András SZIGETHY, CEO TECHNOORG-LINDA Ltd. +36 30 374 5799 a.szigethy@technoorg.hu, www.technoorg.hu

TECHNOORG L I N D A

www.technoorg.hu

TECHNICAL EXPERT

Dr. Ferenc GYÍMESI, CEO PhD, C.Sc. in Physics (HAS) /r. assoc. professor (BUTE)/ HOLOMETROX Ltd.

+36 30 847 2322 holometrox@dr-gyimesi.hu; www.dr-gyimesi.hu

Basic function and basic requirements

3D surface measurement of

DEFORMATION (SHAPE CHANGE)

and what can be calculated from it:

DEFORMATION QUANTITIES (RELATIVE DEFORMATION) STRESS DISTRIBUTION / with submicron/nanometer sensitivity

Applies holographic "photography" with laser light

 using the records of the states before and after deformation while the object can even be removed from the measurement between the records

- using diffusely reflecting (painted, if necessary) surfaces with unchanged surface microstructures

2. Hardware realizations

Present

/multi-purpose instrument under development/

Laser-FALCONEYE/H with horizontal (sidewise) object clamping

separate Laser-FALCONEYE / Def-XL for measuring deformation of large objects

miniaturized Laser-FALCONEYE / Str-XS for stress measurement⁵

Laser-FALCONEYE/V1 and V2 (upper and lower object clamping)

3. Technical parameters

SENSITIVITY			
Basic value		0,05 μm	
	Extendable to:	0,00	5 µm
	MEASURING	MEASURING RANGE	
	Basic value		0,25
		Extendable to:	

FIELD OF VIEW				
Basic value		35 mm x 50 mm		
	Extendable to:	350 mm x 500 mm		
	SPATIAL RESO	LUTION OF MEASURING POINTS		
	Basic value		0,5 mm	
		Extendable to:		0,005 mm

I. and II. GENERAL TRENDS of application

I. Actually formed DEFORMATION

The goal: measuring actual deformation of an object, as well as directly calculable quantities:

e.g. deformation and deformational stress change from change of shape...

II. *Applied* DEFORMATION – *for diagnostic purposes*

The goal: not the measurement of actual deformation, but measuring other physical quantities, which can be made measurable indirectly by deliberately causing deformation in the object: e.g. material deficiency, weak joints, material inhomogeneity, + stress (residual and entire, also) ...

Application fields (cont. I.)

II. *Applied* DEFORMATION – *for diagnostic purposes*

II/A. STRUCTURAL INTEGRITY (I-II-III.)

(measuring the deformation from a proper diagnostic load: hydraulic, pneumatic, mechanical, heat based..)

- 1. Material deficiency defects (wall thickness defects)
- 2. Material bonding defects (qualification of joints)
- 3. Material structure homogeneity defects... /planned/

II/B. and II/C. Properties accessible from

ble from STRESS (DISTRIBUTION) and its CHANGE

(measuring the deformation from stress-releasing at blind hole drilling) LOAD-CARRYING CAPACITY, STRUCTURAL INTEGRITY (I –II–III.), SHAPE STABILITY /+ STRESS CORROSION...(planned)/

Specifically for qualification of weldings...

PRESSURE VESSEL - EXAMPLES

II/A. STRUCTURAL INTEGRITY (I-II-III.) /determined by deformation/

(measuring the deformation from a proper diagnostic load)

1. Material deficiency defects (wall thickness defects)

2. Material bonding defects, by <u>DEFORMATION</u>

3. Material structure homogeneity defects... /planned/

Deformation distribution of aluminum gas cylinder at 30 bar test pressure - with the deformation of welding seam

II/A. STRUCTURAL INTEGRITY (I-II-III.)

2. Material bonding defects (qualification of joints)

a. Welded pipe (I - II.)

Strain distribution of a welded pipe at 20 bar test pressure - with the "tightening" deformation of the seam

Strain distribution of a welded pipe at 20 bar test pressure

- comparison with the "elastic reference"

Specifically for qualification of weldings...

BASIC WELDING TYPE EXAMPLES

II/B. and II/C. Properties accessible from STRESS (DISTRIBUTION) and its CHANGE

(measuring the deformation from stress-releasing at blind hole drilling)

5 advantages of the Laser–FALCONEYE holographic gage-camera in stress measurement /compared to classical strain gage methods/

5 main advantages of the Laser-FALCONEYE holographic gage-camera - compared to the strain gage rosette

I. HIGHER ACCURACY AND RELIABILITY

because of the more complete displacement information (in 3D form and available on a surface at any distance from the edge of the hole), any theory of the stress measurement via stress-releasing can be fitted in more places and in more ways, too, to the multitude of the holographically measured values – furthermore, the presence of inhomogeneous stress distribution is immediately visually detectable from the distortion of the interferometric fringe pattern!

II. FASTER REPRODUCIBILITY - <u>THEREFORE IT IS SUITIBLE FOR</u> <u>DETAILED SCANNING OF STRESS DISTRIBUTION!</u>

because it is applicable faster and more simply in nearby points, even in the nodes of a dense measuring grid – which only requires "sewing machine-like" drilling sequences (which does not require precise drill-hole positioning)

III. FEWER REQUIREMENTS OF SURFACE QUALITY

because it does not come in contact with the surface of the object – aside from the drilling

IV. FEWER REQUIREMENTS OF THE SIZE, SHAPE AND ACCESSIBILITY OF THE SURFACE AROUND THE MEASURING POINT

because it only examines the area near the drill-hole – to about two times the hole radius

V. NO NEED FOR DIMINISHING MATERIALS (except for drill bits)

II/B. Properties accessible from STRESS (DISTRIBUTION)

1. Actually formed stress

1.1. Without load (residual stress): SHAPE STABILITY and LOAD-CARRYING CAPACITY

1.1.3. DURING MANUFACTURING: b. Welding (I – II – III – IV.)

Stress distribution of the welding seam and its surrounding area in steel – for qualification of the welding technology¹⁵

II/B. Properties accessible from STRESS (DISTRIBUTION)

1. Actually formed stress

1.1. Without load (residual stress): SHAPE STABILITY and LOAD-CARRYING CAPACITY

Stress distribution graph of the welding seam and its surrounding area in stainless steel – for qualification of the welding technology ¹⁶

II/B. Properties accessible from STRESS (DISTRIBUTION)

1. Actually formed stress

1.1. Without load (residual stress): SHAPE STABILITY and LOAD-CARRYING CAPACITY

1.1.3. DURING MANUFACTURING: b. Welding (I'' – II – III – IV.)

<u>In-depth</u> stress distribution graphs of the welding seam and its surrounding area in stainless steel – for qualification of the welding technology ¹⁷

II/B. Properties accessible from STRESS (DISTRIBUTION)

1. Actually formed stress

1.1. Without load (residual stress): <u>SHAPE STABILITY</u> and <u>LOAD-CARRYING CAPACITY</u>

1.1.3. DURING MANUFACTURING: b. Welding (I – II – III – IV.)

Stress of corner weld (in one measuring point)

- for qualification of the welding technology

I/B. Properties accessible from STRESS (DISTR 1. Actually formed stress

SEMI-NONDESTRUCTIVE with MINI-HOLE!!!

- 1.1. Without load (residual stress): <u>SHAPE STABILITY</u> a
 - **1.1.3.** DURING MANUFACTURING: b. Laser welding (I II IIIb IV.)

Stress distribution of the laser welding of welded steel and aluminum plate - for qualification of the welding technology

II. Applied DEFORMATION – for diagnostic purposes I/B. Properties accessible from STRESS (DISTRIBL **Residual stress varies greatly in** 1. Actually formed stress direction and magnitude 1.1. Without load (residual stress): SHAPE STABILITY and LOAD-CARRYING CAPACITY 4 mm 1.1.3. DURING MANUFACTURING: b. Welding (I – II – III – IV.) 2 mm³ 5 MPa 1 mm 0.55[µm] $|u_x \vec{\iota} + u_y \vec{j}|; u_x \vec{\iota} + u_y \vec{j}$ 70 MPa 180 MPa 0[±]0.05 1 µm 145,MPa 1.6[µm] 170 MPa 2.2[µm] k 🖊 -65 MPa 175 MPa 1.6[µm] 150 MPa 20 MPa **_0.2** 2.6[µm] 195 MPa 0 ₹0.2 220 MPa 2.4[um -45 MPa 1.4 [µm] 130 MPa 83 -11.9 95 MPa Stress distribution of the deposited layer of deposition welding and the substrate

- for qualification of the welding technology (II.)

II/B. Properties accessible from STRESS (DISTRIBUTION)

1. Actually formed stress

1.1. Without load (residual stress): <u>SHAPE STABILITY</u> and <u>LOAD-CARRYING CAPACITY</u>

7 mm

Stress distribution of the deposited layer of deposition welding and the substrate - for qualification of the welding technology (Ia.)

 $0 \stackrel{\bigstar}{=} 0.2$

170 MPa

22

1. Actually formed stress

1.1. Without load (residual stress): SHAPE STABILITY and LOAD-CARRYING CAPACITY

Stress distribution of the deposited layer of deposition welding and the substrate - for qualification of the welding technology (Ib.)

Specifically for qualification of weldings...

PRESSURE VESSEL - EXAMPLES

II/B. and II/C. Properties accessible from STRESS (DISTRIBUTION) and its CHANGE

(measuring the deformation from stress-releasing at blind hole drilling)

Stress of welding seam (and pipe wall) at 20 bar test pressure – for qualification of structural integrity

II. Applied DEFORMATION – for diagnostic purp Ses COMPARISON WITH II/C. Properties accessible from STRESS (DISTRIBUTION) 2. Applied stresses for diagnostic purposes 2.1 STRUCTURAL INTEGRITY (I-II-III.) 3 mm a. Welding seam of a pipe 1,5 mm $|u_x \vec{\iota} + u_y \vec{j}|; u_x \vec{\iota} + u_y \vec{j}$ 0 bar inner pressure •-45 MPa 0.9[µm] -7.0° -115 MPa Stress change of the seam: WELDING -35 MPa + 30 MPa .9[µm] **SEAM __** <u>-1,5</u>°_ _ 85 MPa y₽ op<mark>tio</mark>nal 20 bar inner test pressure comparison with 1 mm reference 65 MPa 0 bar inner pressure .95 MPa 0.9[µm] 15.0° Stress change of the in the **PIPE WALL:** 75 MPa pipe wall + 60 MPa լլույ 155 MPa

Stress *change* of the welding seam (and the pipe wall)

20 bar inner test pressure

- for qualification of structural integrity ²⁶

ADDENDUM

A COMPLEX STRESS EXAMPLE: WELDED HOLLOW SECTION

Measurement of STRESS DISTRIBUTIONS ON THE SURFACE AND <u>IN DEPTH</u>, TOO...

STRESS DISTRIBUTION

ON THE SURFACE by measuring the deformation caused by (stress relieving) hole drilling

Non-welded side ded II. Applied DEFORMATION – for diagnostic purpose II/B. Properties accessible from STRESS (DISTRIBUTION) 1.1.3. DURING MANUFACTURING: b. Welding (I - II'/1 - III - IV.)-295 MPa -5 MPa 1.2 um $-5.0^{\circ} \rightarrow \chi$ $-12.0^{\circ} \searrow \chi$ 20 MPa . 380 MPa 4.7 um 5.0 µm -35 MPa 14 um 0.0° 380 MPa IN THE MIDDLE 4.3 um **IN THE CENTER** in depth measurement to follow -40 MPa 355 MPa $\frac{5.0^{\circ}}{2} \rightarrow \chi$ 430 MPa 00 MP: 4.9 µm 5.4 µm 5 µm

The surface distribution of residual stress - along a cross-line on the surface

at the non-welded side 29

The surface distribution of residual stress - along a cross-line on the surface

The surface distribution of residual stress - along a cross-line on the surface

at the welded side 31

STRESS DISTRIBUTION

IN DEPTH (I.) by incremental hole drilling: up to a limited depth...

(approximately up to the hole diameter and up to half wall thickness...)

II/B. Properties accessible from STRESS (DISTRIBUTION) 1.1.3. DURING MANUFACTURING: b. Welding (I - II'/1 - III - IV.)

The in depth distribution of residual stress - in the wall at the non-welded side:

from above

II/B. Properties accessible from STRESS (DISTRIBUTION) 1.1.3. DURING MANUFACTURING: b. Welding (I – II'/1 – III – IV.)

The in depth distribution of residual stress - in the wall at the non-welded side:

<u>from below</u>

Non

From in

Nelder

The in depth distribution of residual stress - in the wall at the non-welded side from above and from below together: <u>COMPLETE DEPTH DISTRIBUTION</u>

II/B. Properties accessible from STRESS (DISTRIBUTION) 1.1.3. DURING MANUFACTURING: b. Welding (I - II'/1 - III - IV.)

The in depth distribution of residual stress - in the wall at the non-welded side:

36 at very fine depth steps

II/B. Properties accessible from STRESS (DISTRIBUTION) 1.1.3. DURING MANUFACTURING: b. Welding (I - II'/1 - III - IV.)

The in depth distribution of residual stress – at extreme places:

in the welding seam

37

II/B. Properties accessible from STRESS (DISTRIBUTION) 1.1.3. DURING MANUFACTURING: b. Welding (I – II'/1 – III – IV.)

The in depth distribution of residual stress – at extreme places:

at the corner

STRESS DISTRIBUTION

IN DEPTH (II.) by (incremental) hole drilling: with upper layer removal to a much less depth limitation...

> (under current development, limitations not quite definite yet...)

II. Applied DEFORMATION – for diagnostic purposes Melclec II/B. Properties accessible from STRESS (DISTRIBUTION) 1.1.3. DURING MANUFACTURING: b. Welding (I - II'/1 - III - IV.)95 MPa# 4 mm 7 um 5 mm 20 MPa[#] 1.6 µm (6⁴ mm) -125 MPa# 4 mm ⁻3 mm 155 MPa# 1.8 µm (6 mm) 00 0 530 MPa[#] 4 mm 320 MPa mm -4.5 um # indicative values only

but not very far from reality!

The in depth distribution of residual stress - in the wall at the non-welded side: with experimental upper layer removal...⁴⁰

Thank you for your attention!

Contact:

PRODUCT MANAGER

András SZIGETHY, CEO TECHNOORG-LINDA Ltd. +36 30 374 5799 a.szigethy@technoorg.hu, www.technoorg.hu

TECHNICAL EXPERT

Dr. Ferenc GYÍMESI, CEO PhD, C.Sc. in Physics (HAS) /r. assoc. professor (BUTE)/ HOLOMETROX Ltd.

+36 30 847 2322 holometrox@dr-gyimesi.hu; www.dr-gyimesi.hu